Step of Proof: decidable__iff
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
decidable
iff
:
P
,
Q
:
. Dec(
P
)
Dec(
Q
)
Dec(
P
Q
)
latex
by ((Repeat (Unfolds ``iff rev_implies`` 0))
CollapseTHEN ((Auto_aux (first_nat 1:n
C
) ((first_nat 1:n),(first_nat 3:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
t
T
,
P
Q
,
P
Q
,
P
Q
,
,
x
:
A
.
B
(
x
)
Lemmas
decidable
wf
,
decidable
implies
,
decidable
and
origin